Copied to
clipboard

G = C22⋊C4×D9order 288 = 25·32

Direct product of C22⋊C4 and D9

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C22⋊C4×D9, D18.10D4, C23.18D18, (C2×C4)⋊5D18, C2.1(D4×D9), D18⋊C48C2, D185(C2×C4), C6.77(S3×D4), C224(C4×D9), (C2×C36)⋊6C22, C18.17(C2×D4), (C22×D9)⋊2C4, (C2×C12).176D6, C18.6(C22×C4), (C23×D9).1C2, (C22×C6).40D6, C18.D43C2, (C2×C18).21C23, (C2×Dic9)⋊5C22, C22.13(C22×D9), (C22×C18).10C22, (C22×D9).33C22, (C2×C4×D9)⋊8C2, C2.8(C2×C4×D9), C91(C2×C22⋊C4), C6.45(S3×C2×C4), C3.(S3×C22⋊C4), (C2×C18)⋊1(C2×C4), (C2×C6).6(C4×S3), (C9×C22⋊C4)⋊8C2, (C3×C22⋊C4).12S3, (C2×C6).178(C22×S3), SmallGroup(288,90)

Series: Derived Chief Lower central Upper central

C1C18 — C22⋊C4×D9
C1C3C9C18C2×C18C22×D9C23×D9 — C22⋊C4×D9
C9C18 — C22⋊C4×D9
C1C22C22⋊C4

Generators and relations for C22⋊C4×D9
 G = < a,b,c,d,e | a2=b2=c4=d9=e2=1, cac-1=ab=ba, ad=da, ae=ea, bc=cb, bd=db, be=eb, cd=dc, ce=ec, ede=d-1 >

Subgroups: 992 in 198 conjugacy classes, 60 normal (20 characteristic)
C1, C2, C2, C2, C3, C4, C22, C22, C22, S3, C6, C6, C6, C2×C4, C2×C4, C23, C23, C9, Dic3, C12, D6, C2×C6, C2×C6, C2×C6, C22⋊C4, C22⋊C4, C22×C4, C24, D9, D9, C18, C18, C18, C4×S3, C2×Dic3, C2×C12, C22×S3, C22×C6, C2×C22⋊C4, Dic9, C36, D18, D18, C2×C18, C2×C18, C2×C18, D6⋊C4, C6.D4, C3×C22⋊C4, S3×C2×C4, S3×C23, C4×D9, C2×Dic9, C2×C36, C22×D9, C22×D9, C22×D9, C22×C18, S3×C22⋊C4, D18⋊C4, C18.D4, C9×C22⋊C4, C2×C4×D9, C23×D9, C22⋊C4×D9
Quotients: C1, C2, C4, C22, S3, C2×C4, D4, C23, D6, C22⋊C4, C22×C4, C2×D4, D9, C4×S3, C22×S3, C2×C22⋊C4, D18, S3×C2×C4, S3×D4, C4×D9, C22×D9, S3×C22⋊C4, C2×C4×D9, D4×D9, C22⋊C4×D9

Smallest permutation representation of C22⋊C4×D9
On 72 points
Generators in S72
(1 23)(2 24)(3 25)(4 26)(5 27)(6 19)(7 20)(8 21)(9 22)(10 28)(11 29)(12 30)(13 31)(14 32)(15 33)(16 34)(17 35)(18 36)(37 64)(38 65)(39 66)(40 67)(41 68)(42 69)(43 70)(44 71)(45 72)(46 55)(47 56)(48 57)(49 58)(50 59)(51 60)(52 61)(53 62)(54 63)
(1 14)(2 15)(3 16)(4 17)(5 18)(6 10)(7 11)(8 12)(9 13)(19 28)(20 29)(21 30)(22 31)(23 32)(24 33)(25 34)(26 35)(27 36)(37 46)(38 47)(39 48)(40 49)(41 50)(42 51)(43 52)(44 53)(45 54)(55 64)(56 65)(57 66)(58 67)(59 68)(60 69)(61 70)(62 71)(63 72)
(1 59 23 41)(2 60 24 42)(3 61 25 43)(4 62 26 44)(5 63 27 45)(6 55 19 37)(7 56 20 38)(8 57 21 39)(9 58 22 40)(10 64 28 46)(11 65 29 47)(12 66 30 48)(13 67 31 49)(14 68 32 50)(15 69 33 51)(16 70 34 52)(17 71 35 53)(18 72 36 54)
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45)(46 47 48 49 50 51 52 53 54)(55 56 57 58 59 60 61 62 63)(64 65 66 67 68 69 70 71 72)
(1 22)(2 21)(3 20)(4 19)(5 27)(6 26)(7 25)(8 24)(9 23)(10 35)(11 34)(12 33)(13 32)(14 31)(15 30)(16 29)(17 28)(18 36)(37 62)(38 61)(39 60)(40 59)(41 58)(42 57)(43 56)(44 55)(45 63)(46 71)(47 70)(48 69)(49 68)(50 67)(51 66)(52 65)(53 64)(54 72)

G:=sub<Sym(72)| (1,23)(2,24)(3,25)(4,26)(5,27)(6,19)(7,20)(8,21)(9,22)(10,28)(11,29)(12,30)(13,31)(14,32)(15,33)(16,34)(17,35)(18,36)(37,64)(38,65)(39,66)(40,67)(41,68)(42,69)(43,70)(44,71)(45,72)(46,55)(47,56)(48,57)(49,58)(50,59)(51,60)(52,61)(53,62)(54,63), (1,14)(2,15)(3,16)(4,17)(5,18)(6,10)(7,11)(8,12)(9,13)(19,28)(20,29)(21,30)(22,31)(23,32)(24,33)(25,34)(26,35)(27,36)(37,46)(38,47)(39,48)(40,49)(41,50)(42,51)(43,52)(44,53)(45,54)(55,64)(56,65)(57,66)(58,67)(59,68)(60,69)(61,70)(62,71)(63,72), (1,59,23,41)(2,60,24,42)(3,61,25,43)(4,62,26,44)(5,63,27,45)(6,55,19,37)(7,56,20,38)(8,57,21,39)(9,58,22,40)(10,64,28,46)(11,65,29,47)(12,66,30,48)(13,67,31,49)(14,68,32,50)(15,69,33,51)(16,70,34,52)(17,71,35,53)(18,72,36,54), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72), (1,22)(2,21)(3,20)(4,19)(5,27)(6,26)(7,25)(8,24)(9,23)(10,35)(11,34)(12,33)(13,32)(14,31)(15,30)(16,29)(17,28)(18,36)(37,62)(38,61)(39,60)(40,59)(41,58)(42,57)(43,56)(44,55)(45,63)(46,71)(47,70)(48,69)(49,68)(50,67)(51,66)(52,65)(53,64)(54,72)>;

G:=Group( (1,23)(2,24)(3,25)(4,26)(5,27)(6,19)(7,20)(8,21)(9,22)(10,28)(11,29)(12,30)(13,31)(14,32)(15,33)(16,34)(17,35)(18,36)(37,64)(38,65)(39,66)(40,67)(41,68)(42,69)(43,70)(44,71)(45,72)(46,55)(47,56)(48,57)(49,58)(50,59)(51,60)(52,61)(53,62)(54,63), (1,14)(2,15)(3,16)(4,17)(5,18)(6,10)(7,11)(8,12)(9,13)(19,28)(20,29)(21,30)(22,31)(23,32)(24,33)(25,34)(26,35)(27,36)(37,46)(38,47)(39,48)(40,49)(41,50)(42,51)(43,52)(44,53)(45,54)(55,64)(56,65)(57,66)(58,67)(59,68)(60,69)(61,70)(62,71)(63,72), (1,59,23,41)(2,60,24,42)(3,61,25,43)(4,62,26,44)(5,63,27,45)(6,55,19,37)(7,56,20,38)(8,57,21,39)(9,58,22,40)(10,64,28,46)(11,65,29,47)(12,66,30,48)(13,67,31,49)(14,68,32,50)(15,69,33,51)(16,70,34,52)(17,71,35,53)(18,72,36,54), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72), (1,22)(2,21)(3,20)(4,19)(5,27)(6,26)(7,25)(8,24)(9,23)(10,35)(11,34)(12,33)(13,32)(14,31)(15,30)(16,29)(17,28)(18,36)(37,62)(38,61)(39,60)(40,59)(41,58)(42,57)(43,56)(44,55)(45,63)(46,71)(47,70)(48,69)(49,68)(50,67)(51,66)(52,65)(53,64)(54,72) );

G=PermutationGroup([[(1,23),(2,24),(3,25),(4,26),(5,27),(6,19),(7,20),(8,21),(9,22),(10,28),(11,29),(12,30),(13,31),(14,32),(15,33),(16,34),(17,35),(18,36),(37,64),(38,65),(39,66),(40,67),(41,68),(42,69),(43,70),(44,71),(45,72),(46,55),(47,56),(48,57),(49,58),(50,59),(51,60),(52,61),(53,62),(54,63)], [(1,14),(2,15),(3,16),(4,17),(5,18),(6,10),(7,11),(8,12),(9,13),(19,28),(20,29),(21,30),(22,31),(23,32),(24,33),(25,34),(26,35),(27,36),(37,46),(38,47),(39,48),(40,49),(41,50),(42,51),(43,52),(44,53),(45,54),(55,64),(56,65),(57,66),(58,67),(59,68),(60,69),(61,70),(62,71),(63,72)], [(1,59,23,41),(2,60,24,42),(3,61,25,43),(4,62,26,44),(5,63,27,45),(6,55,19,37),(7,56,20,38),(8,57,21,39),(9,58,22,40),(10,64,28,46),(11,65,29,47),(12,66,30,48),(13,67,31,49),(14,68,32,50),(15,69,33,51),(16,70,34,52),(17,71,35,53),(18,72,36,54)], [(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45),(46,47,48,49,50,51,52,53,54),(55,56,57,58,59,60,61,62,63),(64,65,66,67,68,69,70,71,72)], [(1,22),(2,21),(3,20),(4,19),(5,27),(6,26),(7,25),(8,24),(9,23),(10,35),(11,34),(12,33),(13,32),(14,31),(15,30),(16,29),(17,28),(18,36),(37,62),(38,61),(39,60),(40,59),(41,58),(42,57),(43,56),(44,55),(45,63),(46,71),(47,70),(48,69),(49,68),(50,67),(51,66),(52,65),(53,64),(54,72)]])

60 conjugacy classes

class 1 2A2B2C2D2E2F2G2H2I2J2K 3 4A4B4C4D4E4F4G4H6A6B6C6D6E9A9B9C12A12B12C12D18A···18I18J···18O36A···36L
order122222222222344444444666669991212121218···1818···1836···36
size1111229999181822222181818182224422244442···24···44···4

60 irreducible representations

dim111111122222222244
type+++++++++++++++
imageC1C2C2C2C2C2C4S3D4D6D6D9C4×S3D18D18C4×D9S3×D4D4×D9
kernelC22⋊C4×D9D18⋊C4C18.D4C9×C22⋊C4C2×C4×D9C23×D9C22×D9C3×C22⋊C4D18C2×C12C22×C6C22⋊C4C2×C6C2×C4C23C22C6C2
# reps1211218142134631226

Matrix representation of C22⋊C4×D9 in GL5(𝔽37)

10000
01000
0183600
00010
00001
,
10000
036000
003600
00010
00001
,
60000
010300
042700
000360
000036
,
10000
01000
00100
0003120
0001711
,
10000
01000
00100
0003120
000266

G:=sub<GL(5,GF(37))| [1,0,0,0,0,0,1,18,0,0,0,0,36,0,0,0,0,0,1,0,0,0,0,0,1],[1,0,0,0,0,0,36,0,0,0,0,0,36,0,0,0,0,0,1,0,0,0,0,0,1],[6,0,0,0,0,0,10,4,0,0,0,3,27,0,0,0,0,0,36,0,0,0,0,0,36],[1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,31,17,0,0,0,20,11],[1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,31,26,0,0,0,20,6] >;

C22⋊C4×D9 in GAP, Magma, Sage, TeX

C_2^2\rtimes C_4\times D_9
% in TeX

G:=Group("C2^2:C4xD9");
// GroupNames label

G:=SmallGroup(288,90);
// by ID

G=gap.SmallGroup(288,90);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-3,219,58,6725,292,9414]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^2=c^4=d^9=e^2=1,c*a*c^-1=a*b=b*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e=d^-1>;
// generators/relations

׿
×
𝔽